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The development of the flow field of a jet emanating from a point source of momentum 
in an infinite incompressible fluid of density p is considered. The flow field is assumed 
to be due to the application of a constant force Fo a t  the origin. The problem is formu- 
lated in terms of the dimensionless variable h = (ut ) i / r ,  where u is the kinematic 
viscosity of the fluid, t the time from the application of the force and r the distance 
from the origin. At a station r the flow field is dipolar, with the dipole axis in the direc- 
tion of F,, for all t satisfying the inequalities ut < r2 and Fot2 < 47~pr"'. Also, at a given 
time t the streamlines of the developing flow field in a section through the axis of 
symmetry of the problem form closed loops about a stagnation point. If this occurs at 
h = A,,, the stagnation point propagates to  infinity, along a stmight line emanating 
from the origin, with speed u4/2hm t i ,  where Am = h,,J F,) decreases as Fo increases. The 
larger F, is the faster the steady state is established. 

1. Introduction 
The steady-state flow field of a point source of momentum was considered by Landau 

in 1944 (see Landau & Lifshitz 1959, p. 86) and by Squire (1951) and represents one 
of the few exact solutions of nonlinear axisymmetric hydrodynamics. The jet is 
generated by the action of a force F, applied a t  one point. This jet was reviewed by 
Batchelor (1967, p. 205), who showed that its flow pattern is the same as that generated 
by a slow-moving body a t  large distances from the body, where the actual body shape 
is irrelevant, provided that 27rpu2 < F, = drag experienced by the body. Also it was 
recently suggested by Lighthill (1973) that  the far flow field generated by a small 
hovering insect of weight w, such as Encarsia formosa, will take the form of this classical 
round laminar jet provided that w/pu2 is sufficiently small that the flow field generated 
is stable. 

The development of the flow field of the momentum jet has never been considered. 
This we investigate in the present paper. We show that initially the force sets up an 
impulsive pressure, generating a dipole-like field. However, the equations describing 
the development are in general of mixed type and rather complicated, and even in the 
linear case must be solved numerically. We recently considered a very similar set of 
equations, concerning the development of the flow field due to  an electric current 
discharge in a semi-infinite medium (Sozou & Pickering 1975). Thus, here we follow 
the same general approach, making use of the same numerical techniques, and solve 
our equations by iteration. 
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2. Formulation of the problem 
We consider an incompressible fluid of infinite extent which is acted on by a force F, 

a t  the origin of a spherical polar co-ordinate system ( r ,  8, q5), the direction of the force 
being along the axis 8 = 0. We assume that F, is suddenly switched on and wish to 
investigate the development of the flow field being set up. The velocity field will 
obviously be symmetric about the axis 3 = O,n and, on dimensional grounds, the 
stream function @ associated with this will be given by 

where u is the kinematic viscosity of the fluid, p = cos 8 and h = (ut)j /r .  Thus the fluid 
velocity v will be given by 

II. = w ( p ,  4, (1) 

v = - +[g,, (9 - Ag,)/(l - p 2 k  01, 

&/at + ( V  x v) x v = - V(p /p  + *v2) + UVPV, 

(2) 

where a suffix denotes partial differentiation with respect to that variable. The 
momentum equation is 

(3) 
wherep and p are the fluid pressure and density respectively. On dimensional grounds, 
apart from an additive constant, 

p = u2ph(p, h)/r2. (4) 

( 5 )  

On taking the curl of (3) and making use of (2), after some manipulation we obtain 

(1  -pu2)f , ,  - 4pf,, + hY*A + (4h - 1/2h)fA - 3f9, - Sf,  - h(fA9, -f,SJ = 09 

where S,,+h29AJ(1 -p2)  = f ( p , h ) .  ( 6 )  

Equations ( 5 )  and ( 6 )  are the governing equations of our problem. These equations 
are very similar to a pair of equations used in our previous investigation of the develop- 
ment of the magnetohydrodynamic flow field due to an electric current discharge in 
a conducting semi-infinite fluid. On correcting a misprint in our previous equation ( 6 )  
and setting a constant K ,  which is related to the contribution of the electromagnetic 
field, equal to zero that equation reduces to our present equation ( 5 ) .  Our present 
equation (6) is identical to our previous equation (7).  Thus, as before, we assume that 
for a fixed r as t +co, i.e. as h --f co, the h dependence of the solution will die out expo- 
nentially. This implies, of course, that as h -+a 

LfA, LYAh &?A? h29Ah - + o m  (71 

On eliminatingfbetween ( 5 )  and ( 6 ) ,  making use of (7), we find that the steady-state 
solution gm(p, 03) satisfies the equation 

( 1  - p 2 )  gg - 4pg: - 3g:g: -gmg: = 0, ( 8 )  

where a prime denotes differentiation. The appropriate solution of (8) such that the 
velocity field has no singularities on p = k 1 (Whitham 1963; Batchelor 1967, p. 207) 
is 

where c is a constant related to the force F, inducing the flow by the equation 

g, = 2(l--pZ)/(1+c-p), (9 1 

Po 32 l + c  
-- - -- +4(1  +c)21og (&J +8(1  + c ) .  
27rpu2 3 c(2+c)  
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Equations ( 5 )  and (6) must, of course, be solved numerically in the region 
- 1 < p < 1 , 0  < h < co. It is not easy to solve (5) and (6) in the semi-infinite interval 
0 < h < a. The assumption that the dependence off and g on h dies out exponentially 
as A 3 co enables us to solve (5) and (6) in the strip - 1 < p < 1 , O  < h < A, where A is 
a finite quantity. This assumption is justified a posteriori by our results. 

If we assume that g is specified, (5) is a linear equation in f which is elliptic in the 
region of interest and parabolic on h = 0 and on p = f. 1. Similarly, if we assume that 
f is specified, (6 )  is a linear elliptic equation in g which becomes parabolic on A = 0 and 
on p = 5 1.  We can therefore solve our problem iteratively as follows: we specify g and 
solve (5) forf. That solution is used in (6)  to construct a better approximation to g, 
which is then used in (5) for a better approximation to f and so on. 

The boundary conditions on f and g for the solution of (5) and (6) are 

f (p,  0) = 0, g(p, 0) = 0, g(1, = g( - 1 ,  = 0, (11)--(13) 

g(p, 11) = 9&), f(p9 A) = 9&4, (14), (15) 

- + 4f,,+h2f,,+(4h-1/2h)fA-3fqp-;\fhgp = 0 on ,!.6 = 1.  (16), (17) 

Equations (1 1) and (12) mean that f and g are zero a t  t = 0 and (13) implies that v [see 
(2)] is finite on the axis of symmetry of the problem p = ? 1.  Equations (14) and (15) 
imply approximation of g(p, 00) by g(p, A )  and of f(p, 00) by f(p, A). Equations (16) 
and (17) are derived from ( 5 )  and (13) on the assumption that f,, is finite on p = 5 1.  
This is a reasonable assumption, since when h = co, f i l p  is finite on p = 5 1 and we 
cannot see any reason why fii,l should not be finite on p = 5 1 for all A .  

On considering the radial component of (3) ,  we obtain 

Hence, by integration, 
h = h* - +g,/h2, 

From (6), (7) and (19) i t  can be shown that, in the limit when h +co, h tends to its 
st.eady-state value h,, for which an expression is given in Batchelor’s book (p. 207) : 

The approximst,e satisfaction of 
h(,U,A) = h, 

can be used as an  indication of the accuracy of our numerical solution. 
On using the fact, that the rate of increase of the linear momentum of the fluid in 

a volume bounded by a surface S is equal to  the total force acting on that fluid we can 
relate the impressed force F’, to an integral involving the solution we construct’. Taking 
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FIGURE 1. Streamlines of the developing flow field for the case c = 10 a t  (a )  T = 0.5, ( b )  T = 1, 
(c) T = 2 and ( d )  T = co, where T = (v t )*/L and L is a characteristic length. The numbers 
on tho curves are values of lOO$/vL. The distances along the axes are in units of L. Po = 1 . 4 6 ~ ~ ~ ~ .  
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for S the surface of a sphere of radius R surrounding the origin and considering the rate 
of change of linear momentum in the direction of F,, we obtain 

Fo = lT2 [p(v. f cos 8- v .  6 sin 8) ]  d7 + 2nR2 [ p v .  f (v .  f cos 8 - v .  6 sin8) L1 
- (a, cos 8 - ere sin 8)]  dp, ( 2 2 )  

where 

The expression 

- 2nR2 (a, cos 8 - ere sin 8 )  dp L1 
occurring in ( 2 2 )  represents the force, in the direction of F,, exerted on the fluid within 
the sphere of radius R by the surrounding fluid. Now 

lT $ [p(v. F cos 8 - v .  8 sin S)] dT = 2npu - a s1 SR[9-hg*-PsJ rdrdp,  ( 2 5 )  

and after some manipulation involving mainly integration by parts and use of ( 1 3 )  
and the fact that, for any non-zero t ,  g(p, A )  -+ gm (p)  as r -+ 0, the right-hand side of ( 2 5 )  
reduces to 

at - 1  0 

where A = (ut)l/B, and thus 

1 
[p(v. f cos 8- v .  6 sin B ) ]  d7 = npu2 Gdp.  ( 2 6 )  s1 

On substituting the formulae for a, and a,, and the expression ( 2 6 )  in ( 2 2 ) )  making 
use of ( 2 ) ,  (4) and ( 1 8 )  and performing some algebra which also involves integration 
of part of the resulting expression between p = - 1 and p = 1 ,  we obtain 

For all h the right-hand side of ( 2 7 )  must be a constant, whose value is given by (10). 
The expression given by ( 1 0 )  is obtained from ( 2 6 )  from the case A = 00 (steady state) 
by making use of ( 7 ) )  (9) and (19). If the numerical solution we construct is accurate 
(10) must be in reasonably good agreement with ( 2 7 )  for all A. 

3. Initial motions 

we must have 
Since the right-hand side of ( 2 7 )  must be a constant, in view of ( l l ) ,  ( 1 2 )  and (19) 

g x A2go(p) for small A. (28 )  

gxAA2(1-/42),  f x 0 ,  (291, (30 )  

Also, from (5), ( 6 ) ,  the boundary condition (13) and ( 2 8 )  it  follows that for small A 
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FIQURE 2. Streamlines of the developing flow field for the case c = 1 at (a) T = 0.5, ( b )  T = 1, 
( c )  T = 2 and (d )  T = a. The numbers on the curves are values of lO@/vL. The distances along 
the axes are in units of L. Fo = 11.077rpv~. 
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where A is a constant. On substituting ( 2 9 )  and (30 )  in the expression for h* and ( 2 7 ) ,  
and considering the limit as A 3 0, we obtain 

A = Fo/4npv2, (31 )  

Thus the flow field is that of a dipole with axis along the direction of the impressed 
force; bhat is, at a given station, initially the fluid viscosity plays no part and the flow 
field is irrotational, as one might expect. 

The expression for A given by ( 3 1 )  is correct provided that h << 1 and the nonlinear 
terms of the integrand on the right-hand side of (27 )  are negligible in comparison with 
g/h2, i.e. ( 3 2 )  is valid when 

vt < r2, FOP < 4npr4. (33h ( 3 4 )  

Also, it follows from ( 4 ) ,  (18), ( 2 9 )  and ( 3 1 )  that at t = 0 + , i.e. as soon as the force F, 
is applied, an impulsive pressure F,p/4nr2 is set up in the fluid. The momentum flux 
l p d  S due to the impulsive pressure through the surface of a sphere of radius R 
surrounding the origin accounts for one-third of the applied force F,. Note that, as 
t 3 0, v -+ 0 but p &/at = - V p  + 0 and the remaining part of F, accounts for the sudden 
increment (from zero at  t = 0 - )  in the rate of increase of the linear momentum in 
the direction of F,, as can be ascertained from ( 2 6 ) .  In  view of the dipolar nature of 
the original flow field, for vt < R2 and FOP < 4npR4, the total linear momentum of the 
fluid outside the sphere of radius R is zero. For a given non-zero t, g N gm as r+O 
[inequalities (33 )  and (34 )  are then both reversed]. Thus within the sphere v is not 
dipolar everywhere. That is why, at a given time t, the linear momentum and the 
rate of change of linear momentum of the fluid bounded by the surface of the sphere 
are not zero. 

4. The numerical method 
Equations ( 5 )  and (6) are the fundamental equations of our problem. These equations 

are elliptic within the region - 1 < p < 1,  0 < h < A, but become parabolic on the 
boundaries p = _+ 1 and h = 0. Since g is specified on h = 0, h = A and on p = & 1 by 
(12) - (14) ,  a numerical solution of (6) may, in principle, be obtained relatively easily, 
once f is specified. The boundary conditions for f are given by ( 1  1)  and (15)-( 17).  The 
solution of ( 5 )  is rather complicated, since the form of (16) and (1  7) requires the solution 
for f on p = ~f: 1.  As described by Sozou & Pickering (1975) ,  it  is convenient to trans- 
form equations of the form (5 )  and (6) into equations which are elliptic throughout 
t,he region of interest. 

For the present problem we employed the transformations 

?#I = l - ( l - p ) $  (0 < p  < l) ,  ( 3 5 a )  

?#I = ( l + p ) $ - l  ( - 1  < p  < O ) ,  ( 35b)  

6 = logh. (36) 

The transformations (35) were used in order to make our equations elliptic on p = 5 1. 
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Relation (36) was primarily employed to provide an increasing (with increasing A )  
step length in the A direction, for a constant step length in the 6 direction. This trans- 
formation also eliminates the parabolic nature of our equations on h = 0. Thus the 
equations of our problem become 

(1 + 27 - 7') Fv,, - ( 2 6  - 2 4  + 147 - 7v2 - 1) F7/( 1 - 7) + 4I$5 

+ 2[6 - e-25 - Gv/( 1 - 7)] 4 - 6G1/ F/( 1 - 7) = 0 (37) 

(38) 

and 
G1/? + G7/( 1 -7) + 4(G55- G{)/( 1 + 27 -r2) = 4F( 1 -7)' 

for 0 < 7 < 1 and 

(1 -27 -v2) ql/- (2G-2C;+ 147 + 77'+ 1) F1//(l +7)  + 445 

+ 2[6 - e-'[ - G,/( 1 + 7)] I$ - 6G1/F/( 1 + 7) = 0 (39) 
and 

G1/l/-G1//(l +7)+4(G55-G5)/(1-27-7') = 4F(1 +7)' (40) 

for - 1 < 7 < 0,  where 

F(7, 6 )  = f [ p ( 7 ) ,  4, G(7, t )  = g[p(7) ,  4. 
On p = 7 = 0,  either (37) and (38) or (39) and (40) may be used since both pairs of 

equations reduce to the corresponding forms of ( 5 )  and (6). Alternatively, ( 5 ) ,  (6) and 
(36) (withp = 0 )  may be used with 8p = 87(2 - 87). We adopted the latter approach in 
our calculations. Since h = 0 corresponds to 6 = -a, the boundary conditions on 
h = 0 were replaced by (29) and (30) on 6 = to, where 6, = logh,, A, < 1, i.e. we set 

F(7,  to) = 0, G(7, 5,) = (Fo/4%py2) h31 -p'(r)l. (41), (42) 

(43) 

G(7, = g,(p) ,  F(7, = g:(p), (441, (45) 

(46) 

Equations (1 3)-( 15) were transformed to 

G(1, t )  = G( - 1, t )  = 0, 

where 6 = log A. Conditions (16) and (17) were replaced by 

F1/(l,t) = 0 = q-- 1 , t )  

together with the requirements that 

and 
.Z$/(1-7) = -F ,,?, G1//(l-7) = - G  1/11 as r- t l  (47) 

F1//(i+7) =F&, G1/(l+7) = G1/,] as 7-t-1. (48) 

The numerical techniques used to express (37)-(40) in finite-difference form were 
very similar to those employed previously (Sozou & Pickering 1975) and our equa- 
tions were solved iteratively, by successive over-relaxation, as follows. We specified 
an initial approximation to G and solved (37) and (39) for F. This solution was then 
used to solve (38) and (40) for a better approximation to G and so on until convergence. 
Convergence was assumed when two successive iterations produced changes of less 
than in F and less than 0.1 % in G. We set A, = lo-' (5, 1: -4.6) and 6 = 2 
(A 2 7.4). The step lengths in the 5 and 7 directions were &(E -to) x 0.103 and A, 
respectively. 
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FIGURE 3. Streamlines of the developing flow field for the case c = 0.2 at ( a )  T = 0.5, ( b )  T = 1, 
( c )  T = 2 and ( d )  T = 03. The numbers on the curves are values of lO@/vL. The distances 
along the axes are in units of L. F ,  = 49.76npv2. 



682 G. Sozou and W .  171. Pickering 

5. Results and discussion 
We performed computations for various c’s in the range 0.2-10. When c = O(lO), 

I f 1  < 1,  0 < g 4 1 and the flow field is essentially linear. For that case the numerical 
solution we constructed converges rapidly. As c decreases the convergence of the solu- 
tion becomes slower, especially for c < 0-5 ,  where we had to under-relax in order to 
obtain a convergent solution. We believe that our computations bring out all the 
essential features of the development of the flow of the round laminar jet, and we need 
not proceed to values of c < 0.2, where the convergence of the solution is very slow. 

As already suggested in $ 2, an indication of the accuracy of our numerical solution 
can be obtained by checking for the satisfaction of (21) and, for all A, of (27). Our 
computations, using second-order finite-differepce formulae for the derivatives and 
Simpson’s rule for the integration, have shown that these equations are approximately 
satisfied. For c = 10 and c = 1 our h(p ,A)  in general differs by less than 3 %  from 
h(p, co). For c = 0.2 this is the case only for p < 9. For p > 4 the percentage difference 
between h(p ,  A) and h(p ,  00) increases with p to a maximum of about 18 yo and then 
decreases as p increases further. This is probably due to the fact that, for the case 
c = 0.2, for a specified A,  say A,, where A, b O( i),  the rate of change of f ( p ,  A,) with 
respect to p is large for p > +, and increases as p increases. Thus, with the finite- 
difference scheme used, as p increases beyond *, the accuracy of the expression 
(1  -p2)  f,, occurring in (19) is reduced, except near p = 1.  For the complete range of h, 
and all values of c used, the right-hand side of (27) differed by less than 10 % from its 
expected constant value corresponding to the right-hand side of (10). Indeed, for 
most of the range of A the right-hand side of (27) differed by not more than 3-4% 
from the expected constant. 

For all values of c used, we found that a t  A = 3.5 the values of g(p, A )  and f ( p ,  A )  
differed by less than 10 % from their respective steady-state values. Indeed, for many 
values of p, g(p,  3.5) and f ( p ,  3.5) differed by only 2-3 yo from g,(,u) andf,(p) respec- 
tively. This justifies our setting the steady state at  h = A = e2 w 7.4. 

Streamlines of the flow fields which we computed are shown in figures 1-3, for 
various times, for the cases c = 10, 1 and 0.2. When c = O(lO), the flow field is very 
nearly symmetrical about the equatorial plane p = 0 as is clearly seen by inspection 
of figure 1. When c 4 10 the flow field is not symmetric about the plane p = 0 and as 
c decreases the asymmetry increases, except at  times such that (33) and (34) are 
satisfied, when the field is, in effect, that of a dipole as described in $3 .  

In  the early stages of development the streamlines are closed loops, as is seen from 
figures 1-3. This closed-loop structure of the flow field can also be deduced from the fact 
that, at  a given time t ,  h is large near the origin and there g - g, and the flow field has 
a structure similar to the steady state. The streamlines (except the axial one) intersect 
the plane p = 0 at r + 0. For r sufficiently large that (33) and (34) are satisfied, the 
flow field has a dipole-like structure whose streamlines must join up with those which 
intersect the plane p, = 0 nearer the origin, i.e. the streamlines form closed loops. The 
limiting loop (of zero length) represents a point at  which $ has a maximum, i.e. a stag- 
nation point (in effect a stagnation ring about the axis of symmetry of the problem). 
Since we can write $ = v(vt)dg(p,  A ) / A  the maximum value of $ must correspond to 
a particular A, say A,, and a particular p, say, p,. As t increases the velocity field 
develops and the stagnation point moves to infinity along the line p = ,urn with speed 
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vl/2Amth. Our computations have shown that the smaller the value of c, i.e. the larger 
the applied force, the smaller is the value of AT,,. Indeed, for the cases c = 10, 1 and 0.2 
the corresponding values of A,,, are 0.56, 0.53 and 0.39. This is also evident from figures 
1-3. Inspection of these figures shows that for a particular dimensionless time 
T = (vt)*/L, where L is a characteristic length, say T = 1,  the distance from the origin 
of the limiting streamline (maximum value of @) increases as c decreases. This implies 
that the larger the applied force the faster the stagnation point moves to infinity and 
the faster the steady state is established. 

The development of the flow field discussed above is similar to that of the magneto- 
hydrodynamic flow dne to the discharge of an electric current in a semi-infinite fluid 
(Sozou & Pickering 1975). In that case, however, the corresponding value of A, 
increases as the discharged current increases, i.e. as the applied force increases. This 
behavionr of A,,, is a t  variance with what happens in the present investigation but in 
the earlier problem the driving force is distributed throughout the fluid and is not 
concentrated at one point, as is the case here. 
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